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ABSTRACT: Many Digital signal processing (DSP) applications are based on real time constraints. On 

account of this, conventional processors are not suitable for modern day DSP systems. Thus leading major 

issues pertaining to processors are latency and throughput. In order to overcome these issues and there by 
improvising in terms of performance, CORDIC is one such hardware efficient algorithm and its current 

trend of hardware intensive signal processing. It efficiently performs all elementary functions such as 

trigonometric, logarithmic, hyperbolic and exponential functions which are used in DSP systems. In this paper 
redundant Radix-2  CORDIC Architectures for 16-bit and 32 bit has been, implemented on Xilinx 14.2 FPGA 

platform, Simulated on ISim simulator and synthesized on Vertex 5 FPGA device. 
 
Keywords: CORDIC (Coordinate Rotational Digital Computer), FPGA (Field Programmable Gate Array), DSP (Digital 
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I . INTRODUCTION 

J.E. Volder developed CO-ordinate Rotation Digital 

Computer (CORDIC) in 1959 to compute the rotation of 

two dimensional vectors [1]. Later Walther generalized 

this algorithm to compute logarithmic, exponential, 

division, hyperbolic and trigonometric functions [2]. 

CORDIC is an iterative algorithm for the calculation of 

the rotation of two dimensional vectors in linear, 

circular and hyperbolic coordinate systems. This 
rotation is carried out by a sequence of iterations. Each 

of this rotation over a prefixed elementary angle 

(micro rotation) is evaluated by means of addition and 

shift operations. The number of iteration of radix-2 

CORDIC limits its architecture to use in high speed 

applications. 

In this paper, the organization of work as follows. 

Section II gives the basics of CORDIC algorithm. 

Section III describes Radix-2 CORDIC Architecture. 

Introduction to redundant architecture has been 

described in Section IV. Section V gives simulation 
results, comparison plots and synthesis report. In the 

last section VI conclusion of this work has been 

discussed. 

II . BASICS OF CORDIC ALGORITHM 

The CORDIC algorithm is coordinate rotation in 

linear, circular and hyperbolic coordinate systems 

depending on which function is to be calculated. This is 

performed in the CORDIC algorithm by rotating a 

vector through a sequence of arbitrary angles whose 

algebraic sum approximates the desired rotation angle 

[1], [2]. These arbitrary angles have the property that 

vector rotation through each of them may be computed 

easily with a single shift and add operation. CORDIC 

operates in two modes: the rotation mode and the vector 

mode. In rotation mode, angle of rotation and coordinate 
components of original vector are given, where as in 

vector mode, only the coordinate of original components 

are given. Given angle, rotation mode is used to 

perform general rotation and to compute elementary 

operations such as trigonometric functions, 

multiplication, exponential, and hyperbolic functions 

depending on the coordinate system in which it is being 

rotated. The vectoring mode can be used to compute the 

angular argument of the original vector and to compute 

divisions, logarithmic functions. The number of micro 

rotations to be performed in both the modes depends on 
the application. In Cartesian plane rotating a vector by 

an angle θ can be arranged and equations are as follows  

If the rotation angles are restricted so that tan (θ) = ± 2-

i, the multiplication by the tangent term is condensed to 

a simple shift operation. Arbitrary angles of rotation are 

available by performing a series of consecutively 
smaller micro rotation.  
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If the decision at each iterations i, is which direction to 

relate rather than whether or not to rotate, then the cos 

(θ) term becomes a constant .The iterative rotation can 

now be expressed as [3]: 

 

                                         (1)      

 

                                         (2) 

 

Where,
 

Ki= 1/(1+2-2i)1/2; known as scale constant. 

di is known as decision function. 

Removing the scaling constant from the iterative 

equations yields a shift-add algorithm for vector 

rotation. The product of the K can be functional as part 

of a system processing gain or by initiating the rotating 

vector by the reciprocal of the gain of a certain number 
of iterations. The angle of a composite rotation is 

uniquely defined by the sequence of the directions of 

the micro rotations. That series can be represented by a 

decision vector. All possible decision vectors is an 

angular measurement system are based on set of binary 

arctangents. A favorable conversion method uses an 

additional adder- subtractor that holds the elementary 

rotation angles at each single iteration. The elementary 

angles can be expressed in any suitable angular unit 

either radians or degrees and are stored in small lookup 

table or it can be hardwired, depending on the 
implementation. The angle accumulator adds a third 

difference equation to the CORDIC algorithm 

 

                       (3) 

 
The CORDIC in rotation mode, a vector (x, y) is 

rotated by an angle θ. The angle accumulator is 

initialized with the desired rotation angle θ. The 

rotation decision per iteration is made to diminish the 

magnitude of the residual angle in the angle 

accumulator. Hence, the decision per iteration is based 

on the sign of the residual angle after each step. 

Normally, the angle accumulator may be eliminated, if 

the input angle is already expressed in the binary 

arctangent base. 

I I I . RADIX-2 CORDIC ARCHITECTURE 

Radix-2 architecture is as shown in Fig 1. The main pro 

of this type of architecture is that the barrel shifters are 

of fixed size and can be implemented in the wiring. 

Secondly, instead of requiring storage space that is 

ROM that holds the arbitrary angle values, need not 

to be restructured after each iteration because the 

constants can be hardwired. The LUT values for 

computing angle accumulator is distributed as constant 

to each adder in the angle accumulator chain so that the 

entire CORDIC processor is compact to an array of 

interconnected adder-subtraction units. Unlike other 

architectures there is no need of registers which avoids 

unfolded architecture strictly to behave like 

combinational circuit. The delay is favorable, but 

processing time is reduced as compared to other 

iterative structures. Thus produces speed required for 

faster applications. 

 

 
 

Fig. 1. Radix 2 CORDIC Architecture. 

 
The various components required for the Radix-2 

CORDIC processor in unfolded style for 

implementation are ROM which stores the angle values 

tan-1(2-i) where i is varied from 0 to 16 for 16-bit 

processor. There are barrel shifters required for shifting 

of the intermediate values Xi and Yi. The barrel shifters 

carry out a right shift which can be implemented using 

multiplexers. For next iteration for X, Y and Z 

computation there are addition/subtraction unit [7]. 

 

For rotation mode Radix-2 CORDIC 

                                          (4)        

                                          (5)                                

                         (6)  
                  

Where σi = -1 for  Zi < 0.  

 

Else σi =1 after n iterations we get, 

       Xn = An [X0 cos Z0 – Y0 sin Z0]         (7) 

       Yn  = An [Y0 cos Z0 + X0 sin Z0]                     (8)      

       Zn  = 0                                                            (9) 

An                                        (10) 
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For Radix-2 CORDIC, processing gain is 

approximately K≈1.65.The major drawback of the 

conventional CORDIC algorithm is its comparatively 

high latency and low throughput due to the sequential 

nature of the iteration process with carry propagates 

addition and variable shifting in every iteration. To 

overcome these drawbacks, redundant CORDIC 

architecture has been implemented using redundant 
arithmetic. On the other hand, the carry propagate 

addition remained a bottleneck for additional 

throughput enhancement. Two most important 

methodologies have been employed in order to 

increase the speed of CORDIC implementation.  

IV. REDUNDANT ARITHMETIC 

Redundant Number Systems (RNS) offer an alternate 

form of computer arithmetic suited to numerically 

intensive applications. An important property of RNS is 

that it captures or prevents the carry propagation [8,9], 

creating parallel adders with constant delay, 

irrespective of the operand word-length. Thus low 
latency results are produced in an RNS format. 

Traditionally CORDIC implementations are based on 

ripple carry addition. These, however suffer from large 

internal carry propagation delays. Since the adder/ 

subtractor unit forms a major component of CORDIC 

architecture, their performance will determine the 

overall performance of the CORDIC processor. To 

enhance the performance of CORDIC processors 

redundant arithmetic has been proposed.  

Table. 1: Redundant adder addition rules. 

18/04/2016

X�+Y� X�₋₁₋₁₋₁₋₁+Y�₋₁₋₁₋₁₋₁ Intermediate 
carry c �

Intermediate 
sum  s �

-2 Don't care -1 0

-1
At least one is 

negative 

-1 1

None is negative 0 -1

0 Don’t care 0 0

1
At least one is 

negative

0 1

None is negative 1 -1

2 Don’t care 
1 0

Redundant Adder Addition Rules

26

 This arithmetic, due to its inherent carry-free property 

avoids the propagation of carry from the LSB to the 

MSB, resulting in faster operations. This section 

considers radix-2 hybrid and signed-digit additions and 

subtractions. The following table gives redundant adder 

rules [5]. 

 

V.  RESULTS AND DISCUSSION 

Simulation Results: Radix 2 Redundant CORDIC has 

been simulated using Xilinx 14.1.The following fig 

shows the simulation results for 16 bit cos and sine 

values for 30 o degree angles. 

 

 
 

Fig. 2. Simulation waveform for 16 bit sine and cosine 

value. 

The following graph shows the simulation results for % 

error vs angles. 

Simulation Result

18/04/2016 30

 
 

Fig.  3.  Simulation Result for sine values. 

Simulation Result…
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Fig. 4. Simulation Result for cosine values. 
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Synthesis Results:  Redundant Radix 2 CORDIC 

Processor has been implemented using Vertex 5 FPGA 

device. 

 
Fig . 5. Top level view. 

 

 
 

Fig. 6. RTL Schematic view. 

Table 2: Synthesis Results. 

Synthesis Results

• XILINX Vertex  5 FPGA, XC5Vlx30-3ff324

18/04/2016

Parameters
Redundant

16 32

Max Comb Path 

Delay(ns)
13.4 16

Logic Delay(ns) 10.06 12.6

Route Delay(ns) 3.42 3.447

Max Operating

Frequency (MHz)
74 62.4

Leakage Power(uw) 379.89 379.96

Dynamic Power(mw) 60.2 66.156

32

 

 

 

VI .CONCLUSION 

 Redundant Radix 2 CORDIC Processor has been 

designed and implemented on Xilinx14.2. Total delay is 

13.4 ns for 16 bit and 16 ns for 32 bit .It operates at 

higher speed compared to that of non redundant 

CORDIC processor. The switching speed reduces due 

to the redundant architecture so power consumption is 

also less. 
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